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1. Introduction 
When confronted with a large crisis, the crisis management teams require a global overview of the crisis scene. In 

practical situations, however, it is near impossible to obtain such a global overview, due to the abundance of 

information coming from different sources and the lack of a global model of the crisis scene where all this 

information can be nicely visualized upon. However, in reality, such 3D models are almost never readily available. 

As such, they must be constructed on-site in an automated way. Therefore, we applied the presented 3D 

reconstruction approach to images shot by a semi-autonomous robotic agent [2]. The idea is that this robot is sent 

out by the crisis management teams to autonomously build up a model of the environment, which can then be 

used for a better assessment of the situation. This application poses an extra difficulty to the 3D reconstruction 

approach, as it is required to handle relatively large outdoor environments.  

In this paper, we propose an automated 3D reconstruction approach for building a global 3D model. This 3D 

reconstruction approach is based on dense structure from motion (SFM) recovery from images captured by a 

camera on-board a semi-autonomous crisis management robot. Dense SFM algorithms aim at estimating a 3D 

location for all image pixels. The most modern existing dense SFM algorithms minimize the optical flow constraint 

and enforce smoothness in the depth field in a variational framework. However, due to the noisiness of the optical 

flow and due to projection ambiguities (leading a.o. to occlusions), these algorithms are still not very robust when 

confronted with unconstrained 3D camera motion and changing illumination conditions. One could argue that 

these problems are due to the fact that dense SFM is a relatively new field of research. In this context, we present 

a methodology which is able to cope with these problems, due to an integration of more reliable sparse motion 

data, next to the dense motion information. This method is capable of estimating a high quality 3D reconstruction 

of a scene, which can provide a valuable tool for the crisis management teams. However, this approach has one 

main disadvantage: with the current state of the art in computing power, it is not possible to process this data in 

real-time or near-real-time. While awaiting faster computer processing technology, it is thus only possible to use 

this 3D reconstruction technique as an off-line tool, e.g. for evaluation purposes or for post-disaster needs 

assessment. 

In order to offer the crisis management teams a 3D perception and visualization technology which can directly put 

to use, we present in this paper also another 3D reconstruction methodology. This approach fuses dense stereo 

and sparse motion data to estimate high-quality instantaneous depth maps. This methodology achieves near-real-

time processing frame rates, such that it can be directly used on-line by the crisis management teams.  



2. Off-line 3D Reconstruction using Dense Structure from Motion 

2.1.  Methodology 
To address the classical dense structure from motion shortcomings, we adopt a dual approach for dense structure 

estimation, trying to combine the robustness of sparse reconstruction techniques with the completeness of dense 

reconstruction algorithms. Figure 1 explains the proposed methodology.  

 Figure 1: Dense structure from motion processing cue 

The first step of the proposed methodology consists of solving the sparse reconstruction problem. Therefore, we 

used the structure from motion approach presented by Hartley and Zisserman in [3]. These results then serve as 

initial guesses for the dense reconstruction process, which fuses the sparse data with dense information coming 

from a densely estimated optical flow field. The optical flow u is a projection of the 3D motion field and is related 

to the structure through the rigid motion equation. This relation between optical flow and structure and motion on 

one hand and the available sparsely reconstructed structure and motion parameters allow for integrated sparse-

dense reconstruction. A variational approach is used to tackle this high-dimensional data fusion problem. This 

methodology formulates the problem of fusing dense image data - in the form of the image brightness constraint 

from the optical flow – with sparse data - in the form of the epipolar constraint of the sparse reconstruction - as an 

optimization problem. The result of this optimization approach is a high-quality depth map. Multiple of these 

depth maps can be integrated to form a global 3D model of the scene, filmed by the camera system. 

2.2. Results 
The presented 3D reconstruction approach was tested during an integrated crisis management exercise, where an 

airplane crash was simulated. During this exercise, a semi-autonomous robot [2] was asked by the firefighters to 

search for human survivors (in this case: the pilot who ejected from the airplane before the crash) near the 

incident site and while doing this, it was requested to build a 3D model of the environment. Figure 2 shows some 

images taken by the robot on-board camera during this test, whereas Figure 3 shows the reconstructed 3D model. 



     
Figure 2: Some frames shot by the semi-autonomous robot during the crisis management exercise 

The 3D model of Figure 3 shows a good resemblance to the physical nature of the environment and all required 

features can be identified: the ground plane, the bunker in the back, the canopy... As also the motion of the 

camera (which is fixed on the robot) is reconstructed using the presented methodology, the robot can be 

positioned in the virtual environment. As an example of how this 3D model can be efficiently used by crisis 

management teams, the 3D model of Figure 3 also indicates the position of a human survivor. The presence of the 

human survivor was detected by a human victim detection algorithm, presented in [1] and this information was 

fused with the 3D information obtained through the presented depth reconstruction algorithm to locate and 

visualize the victim in the 3D model.  

  
Figure 3: Reconstructed 3D model of the environment, showing the camera/robot position and an indication of the presence 

of human survivors, by fusing the 3D information with the output of a human victim detector algorithm [1]. 

3. On-line 3D Reconstruction using Sparse Structure from Motion 

3.1.  Methodology 
Stereo vision is one of the most active fields of research within the computer vision community. Hence, stereo 

algorithms have gained great maturity over the past decades. The focus of this research work is not to develop 

new stereo vision algorithms, but rather to investigate if and how the addition of motion data could improve 

existing stereo algorithms. Therefore, a short overview is given of the working principles of different stereo 

algorithms. For this, we base ourselves on the excellent taxonomy [5] on dense two-frame stereo vision 

algorithms, written by Scharstein and Szeliski. This taxonomy is based on the observation that most stereo 

algorithms perform the following four stepsError! Reference source not found.: 

1. Matching cost computation: 

In this step, the stereo algorithm searches a range of disparities and accords a matching cost to each disparity for 

each pixel. The most popular matching costs are the Absolute intensity Differences (SAD) and the Squared intensity 



Differences (SSD). However, next to stereo, structure from motion could also deliver an estimate of the new 

disparity level for each pixel. Consider 2 left and right stereo images I11 and I12, shot at time t0 by a calibrated 

stereo rig such that RStereo and tStereo are known. In both images, the projections x11 and x12 of the same 3D point X 

are visible. At time t0 +k, 2 new stereo images, I21 and I22, are shot by the same stereo vision system. Structure from 

Motion is applied on the left images and right images. Here, we use the sparse structure from motion approach 

presented by Hartley and Zisserman in [3]. This leads to an estimation of the inter-frame camera motion, RMotion 

and tMotion, and camera projection matrices P11, P12, P21, P22 for the 4 cameras. Following the stereo and motion 

transformations, x22 can be written as a function of x21: 
1 1 1

22 22 21 21Motion Stereo Motionx P T T T P x . The disparity can then 

be calculated directly from the pixel positions x21 and x22:
1 1 1

22 21 21Motion Motion Stereo Motiond P T T T P Id x . The 

disparity, estimated through sparse structure from motion as presented above, is then used as an extra term for 

the cost function:
 

2 2

/Total SAD SSD Motion StereoCost Cost d d . It is evident that the computational cost of the 

matching cost computation rises with the requested maximum disparity, which is a measure for the precision.  

2. Cost support aggregation: 

As in classical stereo processing techniques, a shiftable window is used for cost support aggregation. 

3. Disparity computation and optimization: 

For global methods, this processing step is the most important one. These methods are often formulated as an 

energy minimization problem with a data term Edata(d) representing how well the disparity function d fits with the 

input image pair and a smoothness term Esmoothness(d) enforcing smoothness constraints, to form an energy function 

( ) ( ) ( )data smoothnessE d E d E d . The definition of the smoothness term is crucial. Indeed, matching of image 

intensities typically fails on monochrome surfaces, because due to the fact that there are multiple solutions, the 

numerical stability cannot be assured. What is needed to solve this problem is a regularization term which 

extrapolates and smooths the structural data over pixels which belong to the same physical object at the same 

distance. As such, we interfere in the third step of the stereo computation algorithm, by including a smoothness 

term Esmoothness(d). The main problem for smoothing is the preservation of discontinuities. Indeed, regularization 

should not over-smooth the solution such that depth discontinuities are no longer visible. Nagel and Enkelmann 

took into account this consideration and proposed in [4] an anisotropic smoothing term which preserves the depth 

discontinuities. The Nagel and Enkelmann regularization model has already been proven successful in a range of 

independent experiments and formulates a regularization term of the form: 
1=

T

smoothnessE ID , 

where D  is a regularized projection matrix. Using this approach, discontinuities can be preserved. 

4. Disparity refinement or post processing: 

In the course of this work, we do not consider”post-processing” steps, as they are too application dependent. 

3.2. Results 
Figure 4 shows the results of the presented dense motion-augmented stereo estimation algorithm. By comparing 

the disparity estimation result of the presented methodology, as presented by Figure 4d to the result of the 

classical stereo approach without the presented augmentations of Figure 4c, it is evident that the proposed 

methodology outputs superior results compared to the classical method. In contrast to the pure stereo result, the 

disparity map as estimated by our method presents no disturbing holes, the depth gradient of the ground plane is 

well-visible, the 2 obstacles on the ground can also be easily discerned on the disparity map, and even the building, 

which is very far away, can be distinguished on the disparity map of Figure 4d. The processing time required to 

estimate a dense depth map using the presented methodology is about 1 second, which is still reasonable for near-

real time applications and it is to be expected that in the near future, with the constant increase in processing 

power, the calculation time will go down substantially, allowing full real-time operation. 



               
a) Left Image                                                                                b) Right Image 

                
c) Disparity Map from Pure Stereo                                                  d) Disparity Map from Dense Stereo + Motion 

Figure 4: Dense Motion-augmented Stereo Estimation 

4. Conclusions 
In this paper, we have presented 2 approaches for the extraction of 3D information from a scene from visual data 

for crisis management applications. A first, off-line, dense structure from motion based approach mixes sparse and 

dense motion data in a variational framework, providing a high quality 3D reconstruction of the scene. The 

visualization of the virtual 3D scene with added localized information, as presented by Figure 3, provides a 

powerful tool for the human crisis management teams to augment their situational awareness without increasing 

the cognitive load too much, as the whole process of data acquisition by the robot and processing by the 

presented algorithm is automated. A second, on-line, methodology mixes sparse motion and dense stereo data in 

an integrated framework, providing high-quality depth maps at near-real-time framerates  
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